
CS101: Introduction to Programming in C++

Introduction to Programming in C++

Course Text

There is no text for this course. All materials are included in the course fee.

Course Description

This course introduces programming concepts to students using the language of their
choice: C++, Python, or Java, while following a consistent course sequence, structure,
and schedule of assessments. 

The course teaches the core computer science concepts of variables, branching, loops,
arrays/lists, and functions/methods. It also introduces object-oriented programming with
classes and inheritance. The course covers use pointers and streams and teaches a
variety of good coding practices, including iterative development, code formatting, and
variable naming schemes.

Course Objectives

After completing this course, students will be able to:

Use standard input and output, and understand common syntax errors
Declare and initialize variables with valid identifiers
Develop programs that branch based on user input
Combine loops and arrays/lists, and develop programs with multiple arrays/lists
Write a function/method, then return from a function/method and parameterize a
function
Initialize class variables with class constructor
Create derived and abstract classes
Write a recursive function
Use binary search, O notation, and algorithm analysis

Course Prerequisites

It is suggested, though not required, that students take Pre-Calculus or its equivalent
before enrolling in this course.

Important Terms

In this course, different terms are used to designate tasks:



Participation Activities: The Participation Activities in the textbook, which are
interactive activities and form the core learning material. Student graded on
completion of Participation Activities.
Challenge Activities: The Challenge Activities in the textbook, which are small
coding problems designed to bridge the gap between reading and labs. Each
problem is auto-graded.
Labs: A set of graded programming tasks. Students write a program to perform a
defined task. Each lab targets a particular concept. All labs are graded
automatically.
Midterm: A graded online test. Fully-automated grading.
Final: A graded and proctored online test. Fully-automated grading.

Academic Integrity Statement

Academic integrity is the pursuit of scholarly activity in an honest, truthful and
responsible manner. Violations of academic integrity include, but are not limited to,
plagiarism, cheating, fabrication and academic misconduct. Failure to comply with the
Academic Integrity Policy can result in a failure and/or zero on the attempted
assignment/examination, a removal from the course, disqualification to enroll in future
courses, and/or revocation of an academic transcript.

Course Completion Policy

In order for a course to be considered complete, all required coursework must be
attempted, submitted, and graded. Required coursework consists of graded assignments.
Any Academic Integrity Policy violations may prevent a course from being considered
complete. 

Course Evaluation Criteria

Your score provides a percentage score and letter grade for each course. A passing
percentage is 70% or higher. 

There are a total of 1000 points in the course:

Topic Assessment Points Available

1 Chapter 1: Introduction to C++ 33

2 Chapter 2: Variables / Assignments 33

3 Chapter 3: Branches 33

4 Chapter 4: Loops 33

5 Chapter 5: Arrays / Vectors 33

6 Chapter 6: User-Defined Functions 33

7 Chapter 7: Objects and Classes 33



Topic Assessment Points Available

8 Chapter 8: Pointers 33

8 Midterm Exam 205

9 Chapter 9: Streams 33

10 Chapter 10: Inheritance 33

11 Chapter 11: Recursion 33

12 Chapter 12: Exceptions 33

13 Chapter 13: Templates 33

14 Chapter 14: Containers 33

15 Chapter 15: Searching and Sorting Algorithms 33

16 Final Exam 300

Total   1000

Course Topics and Objectives

Topic
Number Topic Title Subtopics

1  Introduction to C++

Programming (general)
Programming basics
Comments and whitespace
Errors and warnings
Computers and programs
(general)
Computer tour
Language history
Problem solving
Why programming
Why whitespace matters
C++ example: Salary Calculation
C++ example: Married-couple
names

2 Variables / Assignments Variables and assignments
(general)
Variables (int)
Identifiers



Topic
Number Topic Title Subtopics

Arithmetic expressions (general)
Arithmetic expressions (int)
Example: Health data
Floating-point numbers (double)
Scientific notation for floating-
point literals
Constant variables
Using math functions
Integer division and modulo
Type conversions
Binary
Characters
Strings
Integer overflow
Numeric data types
Unsigned
Random numbers
Debugging
Auto (since C++11)
Style guidelines
C++ example: Salary calculation
with variables
C++ example: Married-couple
names with variables

3 Branches If-else branches (general)
If-else
More if-else
Equality and relational operators
Detecting ranges (general)
Detecting ranges with if-else
statements
Logical operators
Order of evaluation
Example: Toll calculation
Switch statements
Boolean data type
String comparisons
String access operations
Character operations
More string operations
Conditional expressions
Floating-point comparison
Short circuit evaluation
C++ example: Salary calculation
with branches



Topic
Number Topic Title Subtopics

C++ example: Search for name
using branches

4 Loops

Loops (general)
While loops
More while examples
For loops
More for loop examples
Loops and strings
Nested loops
Developing programs
incrementally
Break and continue
Variable name scope
Enumerations
C++ example: Salary calculation
with loops
C++ example: Domain name
validation with loops

5 Arrays / Vectors

Array concept (general)
Vectors
Array iteration drill
Iterating through vectors
Multiple vectors
Vector resize
Vector push_back
Loop-modifying or
copying/comparing vectors
Swapping two variables (General)
Debugging example: Reversing a
vector
Arrays vs. vectors
Two-dimensional arrays
Char arrays / C strings
String library functions
Char library functions: ctype
C++ example: Annual salary tax
rate calculation with vectors
C++ example: Domain name
validation with vectors

6 User-Defined Functions User-defined function basics
Return
Reasons for defining functions
Functions with branches/loops



Topic
Number Topic Title Subtopics

Unit testing (functions)
How functions work
Functions: Common errors
Pass by reference
Functions with string/vector
parameters
Functions with C string
parameters
Scope of variable/function
definitions
Default parameter values
Function name overloading
Parameter error checking
Preprocessor and include
Separate files
C++ example: Salary calculation
with functions
C++ example: Domain name
validation with functions

7 Objects and Classes

Objects: Introduction
Using a class
Defining a class
Inline member functions
Mutators, accessors, and private
helpers
Initialization and constructors
Classes and vectors/classes
Separate files for classes
Choosing classes to create
Unit testing (classes)
Constructor overloading
Constructor initializer lists
The ‘this’ implicit parameter
Operator overloading
Overloading comparison
operators
Vector ADT
Namespaces
Static data members and
functions
C++ example: Salary calculation
with classes
C++ example: Domain name
availability with classes

8 Pointers Why pointers?



Topic
Number Topic Title Subtopics

Pointer basics
Operators: new, delete, and ->
String functions with pointers
A first linked list
Memory regions: Heap/Stack
Destructors
Memory leaks
Copy constructors
Copy assignment operator
Rule of three
C++ example: Employee list
using vectors

9 Streams

Output and input streams
Output formatting
Input string stream
Output string stream
File input
File output
C++ example: Parsing and
validating input files
C++ example: Saving and
retrieving program data
Overloading stream operators

10 Inheritance

Derived classes
Access by members of derived
classes
Overriding member functions
Polymorphism and virtual
member functions
Abstract classes: Introduction
(generic)
Abstract classes
Is-a versus has-a relationships
UML
C++ example: Employees and
overriding class functions
C++ example: Employees using
an abstract class

11 Recursion Recursion: Introduction
Recursive functions
Recursive algorithm: Search
Adding output statements for
debugging



Topic
Number Topic Title Subtopics

Creating a recursive function
Recursive math functions
Recursive exploration of all
possibilities
Stack overflow
C++ example: Recursively output
permutations

12 Exceptions

Exception basics
Exceptions with functions
Multiple handlers
C++ example: Generate number
format exception

13 Templates

Function templates
Class templates
C++ example: Map values using
a function template

14 Containers

Range-based for loop
List
Pair
Map
Set
Queue
Deque
find() function
sort() function

15 Searching and Sorting Algorithms

Searching and algorithms
Binary search
O notation
Algorithm analysis
Sorting: Introduction
Selection sort
Insertion sort
Quicksort
Merge sort

16 Final Exam Final Exam

Back to Top


