
CS102 | Introduction to Programming in C++

Course Text

There is no text for this course. All materials are included in the course fee.

Course Description

This course provides a comprehensive foundation in C++ programming fundamentals. Students begin with
basic syntax, variables, and control structures including branches and loops. The course progresses through

essential data structures like arrays and vectors, then advances to object-oriented programming concepts
including classes, inheritance, and polymorphism. Key topics include memory management with pointers, file
I/O through streams, and advanced features like templates and containers. Students explore recursive

programming, exception handling, and implement common algorithms for searching and sorting. Hands-on
coding practice problems and laboratory exercises reinforce theoretical concepts, preparing students for

advanced programming coursework and real-world software development challenges.

Learning Outcomes

After completing this course, students will be able to:

1. Analyze the fundamental syntax and structure of C++ programs to identify correct programming practices.
2. Apply control flow structures (branches and loops) to solve computational problems.
3. Implement data storage and manipulation using arrays, vectors, and other container classes.

4. Design modular programs using user-defined functions with appropriate parameter passing and return
values.

5. Create object-oriented solutions by defining classes with appropriate data members, member functions, and
inheritance relationships.

6. Evaluate memory management techniques using pointers and dynamic memory allocation.

7. Construct programs that handle file input/output and data streams effectively.
8. Develop recursive algorithms to solve problems that can be broken down into smaller subproblems.

9. Apply exception handling mechanisms to create robust programs that gracefully handle runtime errors.
10. Synthesize generic programming concepts using templates and implement common searching and sorting

algorithms.

Course Prerequisites

There are no prerequisites for this course. 

Academic Integrity Statement



Academic integrity is the pursuit of scholarly activity in an honest, truthful and responsible manner. Violations
of academic integrity include, but are not limited to, plagiarism, cheating, fabrication and academic

misconduct. Failure to comply with the Academic Integrity Policy can result in a failure and/or zero on the
attempted assignment/examination, a removal from the course, disqualification to enroll in future courses,

and/or revocation of an academic transcript.

Course Completion Policy

In order for a course to be considered complete, all required coursework must be attempted, submitted,
and graded. Required coursework consists of graded assignments. Any Academic Integrity Policy violations

may prevent a course from being considered complete.

Assessment Types

StraighterLine courses may include any combination of the assessment types described below. Review the

descriptions to learn about each type, then review the Course Evaluation Criteria to understand how your
learning will be measured in this course. 

Benchmarks

Benchmarks test your mastery of course concepts. You have 3 attempts, and your highest score counts.
Note: Cumulative Benchmarks (final exams) only allow 1 attempt.

Capstones

Capstones are project-based assessments that help you apply concepts to real-world scenarios. You have 2

attempts, and your highest score counts.

Checkpoints

Checkpoints are quick knowledge checks on important course concepts. All are open-book, and most have

1-3 attempts.

AI Use-Case Policies

StraighterLine Capstone assessments operate under one of three AI Use-Case Policies. These designations are

selected intentionally to support learners in developing digital literacy, ethical reasoning, and authentic
communication skills. Each model requires students to engage meaningfully with the course outcomes while
adhering to academic standards. 

Independent Work Requirement: Capstones with this designation must be completed independently without
using AI tools. The goal is for learners to showcase their own understanding and skills without AI assistance.

Students are expected to generate and submit original work developed solely through their own reasoning and
effort. 

AI-Assisted Planning Option: Capstones with this designation may allow AI tools to support brainstorming

and assessment planning. If allowed, students will be asked to document any AI assistance by noting how it
informed their work. Documentation must be included within the assignment or in a designated reflection field.
Examples include describing how an AI tool helped organize an outline, generate ideas, or surface sources for

further exploration. 



AI-Integration Requirement: Capstones with this designation require AI tools as part of the learning
process. Students will be asked to reflect upon their AI interactions and AI contributions to the assessment.

Reflections must include which tools were used, how they were used, and what insights students gained from
the process. This promotes transparency, ethical use, and metacognitive skill-building. 

Course Evaluation Criteria

Your score provides a percentage score and letter grade for each course. A passing percentage is 70% or
higher.

There are a total of 1000 points in the course:

Assessment Points Learning Outcomes

Checkpoint 1: Introduction to C++ 20 1

Benchmark 1: Introduction to C++ 42 1

Checkpoint 2: Variables/Assignments 25 1

Benchmark 2: Variables/Assignments 42 1

Checkpoint 3: Branches 25 2

Benchmark 3: Branches 42 2

Checkpoint 4: Loops 25 2

Benchmark 4: Loops 42 2

Checkpoint 5: Arrays/Vectors 25 3

Benchmark 5: Arrays/Vectors 42 3

Checkpoint 6: User-Defined Functions 25 4

Benchmark 6: User-Defined Functions 42 4

Checkpoint 7: Objects and Classes 25 5

Benchmark 7: Objects and Classes 42 5

Checkpoint 8: Pointers 25 6

Benchmark 8: Pointers 42 6

Checkpoint 9: Streams 25 7

Benchmark 9: Streams 42 7

Checkpoint 10: Inheritance 25 5

Benchmark 10: Inheritance 42 5

Checkpoint 11: Recursion 25 8

Benchmark 11: Recursion 42 8

Checkpoint 12: Exceptions 25 9

Benchmark 12: Exceptions 42 9

Checkpoint 13: Templates 25 10



Assessment Points Learning Outcomes

Benchmark 13: Templates 42 10

Checkpoint 14: Containers 25 3

Benchmark 14: Containers 42 3

Checkpoint 15: Searching and Sorting Algorithms 25 10

Benchmark 15: Searching and Sorting Algorithms 42 10

Total 1000

Course Roadmap

This roadmap provides an overview of the checkpoints and lessons covered in this course.

Checkpoint 1: Introduction to C++

Programming
Programming basics
Console input

Comments and whitespace
Errors and warnings

Computers and programs
Integrated development environment
Computer tour

Language history
Problem solving

Why programming
Why whitespace and precision matter
C++ example: Salary Calculation

C++ example: Married-couple names

Checkpoint 2: Variables/Assignments

Variables and assignments (general)

Variables (int)
Identifiers
Arithmetic expressions (general)

Arithmetic expressions (int)
Example: Health data
Floating-point numbers (double)

Scientific notation for floating-point literals
Constant variables

Using math functions
Integer division and modulo
Type conversions

Binary
Characters

Strings
Integer overflow



Numeric data types
Unsigned

Random numbers
Debugging

Auto (since C++11)
Style guidelines
C++ example: Salary calculation with variables

C++ example: Married-couple names with variables

Checkpoint 3: Branches

If-else branches (general)

Detecting equal values with branches
Detecting ranges with branches (general)
Detecting ranges with branches

Detecting ranges using logical operators
Detecting ranges with gaps
Detecting multiple features with branches

Common branching errors
Example: Toll calculation

Order of evaluation
Switch statements
Boolean data type

String comparisons
String access operations

Character operations
Finding, inserting, and replacing text in a string
Conditional expressions

Floating-point comparison
Short circuit evaluation

C++ example: Salary calculation with branches
C++ example: Search for name using branches

Checkpoint 4: Loops

Loops (general)

While loops
More while examples

For loops
More for loop examples
Loops and strings

Nested loops
Developing programs incrementally
Break and continue

Variable name scope
Enumerations

C++ example: Salary calculation with loops
C++ example: Domain name validation with loops

Checkpoint 5: Arrays/Vectors

Array concept (general)

Vectors
Array iteration drill



Iterating through vectors
Multiple vectors

Vector resize
Vector push_back

Loop-modifying or copying/comparing vectors
Swapping two variables (General)
Debugging example: Reversing a vector

Arrays vs. vectors
Two-dimensional arrays

Char arrays / C strings
C-String library functions
Char library functions: cctype

C++ example: Annual salary tax rate calculation with vectors
C++ example: Domain name validation with vectors

Checkpoint 6: User-Defined Functions

User-defined function basics

Print functions
Reasons for defining functions

Writing mathematical functions
Functions with branches
Functions with loops

Unit testing (functions)
How functions work

Functions: Common errors
Pass by reference
Using pass by reference to modify string/vector parameters

Functions with C string parameters
Scope of variable/function definitions

Default parameter values
Function name overloading
Parameter error checking

Preprocessor and include
Separate files

C++ example: Salary calculation with functions
C++ example: Domain name validation with functions

Checkpoint 7: Objects and Classes

Objects: Introduction

Using a class
Defining a class
Inline member functions

Mutators, accessors, and private helpers
Initialization and constructors

Classes and vectors/classes
Separate files for classes
Choosing classes to create

Unit testing (classes)
Constructor overloading

Constructor initializer lists
The ‘this’ implicit parameter
Operator overloading

Overloading comparison operators



Vector ADT
Namespaces

Static data members and functions
C++ example: Salary calculation with classes

C++ example: Domain name availability with classes

Checkpoint 8: Pointers

Pointers (General)
Pointers and dynamically allocated arrays

Changing the size of a dynamically allocated arrays
Dynamically allocating objects

Allocating arrays of objects
Classes with dynamically allocated data
String functions with pointers

Memory regions: Heap/Stack
Destructors
Memory leaks

Copy constructors
Copy assignment operator

Rule of three
Smart pointers
C++ example: Employee list using vectors

Checkpoint 9: Streams

Output and input streams
Output formatting

Input string stream
Output string stream
File input

C++ example: Parsing and validating input files
File output

C++ example: Saving and retrieving program data
Overloading stream operators

Checkpoint 10: Inheritance

Derived classes

Access by members of derived classes
Overriding member functions

Polymorphism and virtual member functions
Abstract classes: Introduction (generic)
Abstract classes

Is-a versus has-a relationships
UML
C++ example: Employees and overriding class functions

C++ example: Employees using an abstract class

Checkpoint 11: Recursion

Recursion: Introduction

Recursive functions
Recursive algorithm: Search



Adding output statements for debugging
Creating a recursive function

Recursive math functions
Recursive exploration of all possibilities

Stack overflow
C++ example: Recursively output permutations

Checkpoint 12: Exceptions

Handling exceptions

Throwing exceptions
Exceptions with files

User-defined exceptions
C++ example: Generate number format exception

Checkpoint 13: Templates

Function templates

Class templates
C++ example: Map values using a function template

Checkpoint 14: Containers

Range-based for loop

List
Pair

Map
Set
Queue

Deque
find() function

sort() function

Checkpoint 15: Searching and Sorting Algorithms

Searching and algorithms
Binary search

O notation
Algorithm analysis

Sorting: Introduction
Selection sort
Insertion sort

Quicksort
Merge sort

Related Courses



IT101

IT Fundamentals

View Course →

MAT102

Quantitative Reasoning

View Course →

MAT202

Introduction to Statistics

View Course →

https://www.straighterline.com/online-college-courses/information-technology-fundamentals/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_information_technology_fundamentals&utm_content=10252
https://www.straighterline.com/online-college-courses/quantitative-reasoning/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_survey_of_world_history&utm_content=10252
https://www.straighterline.com/online-college-courses/introduction-to-statistics/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_intro_to_statistics&utm_content=10252

