
CS103 | Introduction to Programming in Java

Course Text

There is no text for this course. All materials are included in the course fee.

Course Description

This course provides a comprehensive foundation in Java programming and computer science fundamentals.
Students begin with basic syntax, variables, and control structures including branches and loops, then progress

to arrays and user-defined methods. The course covers object-oriented programming principles through
classes, objects, and inheritance, alongside essential topics like memory management and input/output
operations. Advanced concepts include recursion, exception handling, generics, and collections. Students also

explore graphical user interfaces using GUI frameworks and JavaFX, culminating in practical algorithms for
searching and sorting. This course establishes the programming skills and problem-solving techniques

necessary for continued study in computer science.

Learning Outcomes

After completing this course, students will be able to:

1. Apply fundamental Java syntax and programming concepts to solve basic computational problems
2. Implement conditional logic and branching structures to control program flow
3. Construct iterative solutions using various loop structures to process data efficiently

4. Design and manipulate arrays to store and process collections of data
5. Create user-defined methods to promote code reusability and modular programming

6. Develop object-oriented programs using classes, objects, and inheritance principles
7. Integrate file input/output operations to read from and write to external data sources
8. Analyze recursive algorithms and implement recursive solutions for appropriate problem domains

9. Evaluate and implement exception handling mechanisms to create robust, error-resistant programs
10. Synthesize advanced Java concepts including generics, collections, and GUI development to build

comprehensive applications

Course Prerequisites

There are no prerequisites for this course. 

Academic Integrity Statement

Academic integrity is the pursuit of scholarly activity in an honest, truthful and responsible manner. Violations
of academic integrity include, but are not limited to, plagiarism, cheating, fabrication and academic



misconduct. Failure to comply with the Academic Integrity Policy can result in a failure and/or zero on the
attempted assignment/examination, a removal from the course, disqualification to enroll in future courses,

and/or revocation of an academic transcript.

Course Completion Policy

In order for a course to be considered complete, all required coursework must be attempted, submitted,
and graded. Required coursework consists of graded assignments. Any Academic Integrity Policy violations
may prevent a course from being considered complete.

Assessment Types

StraighterLine courses may include any combination of the assessment types described below. Review the
descriptions to learn about each type, then review the Course Evaluation Criteria to understand how your
learning will be measured in this course. 

Benchmarks

Benchmarks test your mastery of course concepts. You have 3 attempts, and your highest score counts.
Note: Cumulative Benchmarks (final exams) only allow 1 attempt.

Capstones

Capstones are project-based assessments that help you apply concepts to real-world scenarios. You have 2
attempts, and your highest score counts.

Checkpoints

Checkpoints are quick knowledge checks on important course concepts. All are open-book, and most have

1-3 attempts.

AI Use-Case Policies

StraighterLine Capstone assessments operate under one of three AI Use-Case Policies. These designations are

selected intentionally to support learners in developing digital literacy, ethical reasoning, and authentic
communication skills. Each model requires students to engage meaningfully with the course outcomes while

adhering to academic standards. 

Independent Work Requirement: Capstones with this designation must be completed independently without
using AI tools. The goal is for learners to showcase their own understanding and skills without AI assistance.

Students are expected to generate and submit original work developed solely through their own reasoning and
effort. 

AI-Assisted Planning Option: Capstones with this designation may allow AI tools to support brainstorming
and assessment planning. If allowed, students will be asked to document any AI assistance by noting how it
informed their work. Documentation must be included within the assignment or in a designated reflection field.

Examples include describing how an AI tool helped organize an outline, generate ideas, or surface sources for
further exploration. 

AI-Integration Requirement: Capstones with this designation require AI tools as part of the learning

process. Students will be asked to reflect upon their AI interactions and AI contributions to the assessment.



Reflections must include which tools were used, how they were used, and what insights students gained from
the process. This promotes transparency, ethical use, and metacognitive skill-building. 

Course Evaluation Criteria

Your score provides a percentage score and letter grade for each course. A passing percentage is 70% or
higher.

There are a total of 1000 points in the course:

Assessment Points Learning Outcomes

Checkpoint 1: Introduction to Java 20 1

Benchmark 1: Introduction to Java 42 1

Checkpoint 2: Variables/Assignments 20 1

Benchmark 2: Variables/Assignments 42 1

Checkpoint 3: Branches 20 2

Benchmark 3: Branches 42 2

Checkpoint 4: Loops 20 3

Benchmark 4: Loops 42 3

Checkpoint 5: Arrays 20 4

Benchmark 5: Arrays 42 4

Checkpoint 6: User-Defined Methods 20 5

Benchmark 6: User-Defined Methods 42 5

Checkpoint 7: Objects and Classes 20 6

Benchmark 7: Objects and Classes 42 6

Checkpoint 8: Memory Management 20 6

Benchmark 8: Memory Management 42 6

Checkpoint 9: Input/Output 20 7

Benchmark 9: Input/Output 42 7

Checkpoint 10: Inheritance 20 6

Benchmark 10: Inheritance 42 6

Checkpoint 11: Recursion 20 8

Benchmark 11: Recursion 42 8

Checkpoint 12: Exceptions 20 9

Benchmark 12: Exceptions 42 9

Checkpoint 13: Generics 20 10

Benchmark 13: Generics 42 10



Assessment Points Learning Outcomes

Checkpoint 14: Collections 20 10

Benchmark 14: Collections 42 10

Checkpoint 15: GUI 35 10

Checkpoint 16: JavaFX 35 10

Checkpoint 17: Searching and Sorting Algorithms 20 10

Benchmark 15: Searching and Sorting Algorithms 42 10

Total 1000

Course Roadmap

This roadmap provides an overview of the checkpoints and lessons covered in this course.

Checkpoint 1: Introduction to Java

Programming (general)
Programming basics
Comments and whitespace

Errors and warnings
Computers and programs (general)

Integrated development environment
Computer tour
Language history

Problem solving
Why programming

Why whitespace matters and precision matter
Java example: Married-couple names

Checkpoint 2: Variables/Assignments

Variables and assignments (general)

Variables (int)
Identifiers

Arithmetic expressions (general)
Arithmetic expressions (int)
Example: Health data

Floating-point numbers (double)
Scientific notation for floating-point literals
Constant variables

Using math methods
Integer division and modulo

Type conversions
Binary
Characters

Strings
Integer overflow



Numeric data types
Random numbers

Reading API documentation
Debugging

Style guidelines
Local variable type face
Java example: Salary calculation

Java example: Salary calculation with variables
Java example: Married-couple names with variables

Checkpoint 3: Branches

If-else branches (general)
Detecting equal values with branches
Detecting ranges with branches (general)

Detecting ranges with branches
Detecting ranges using logical operators
Detecting ranges with gaps

Detecting multiple features with branches
Common branching errors

Example: Toll calculation
Order of evaluation
Switch statements

Boolean data type
String comparisons

String access operations
Character operations
Finding and replacing text in a string

Conditional expressions
Floating-point comparison

Short circuit evaluation
Java example: Salary calculation and sale discount with branches
Java example: Search for name using branches

Checkpoint 4: Loops

Loops (general)
While loops

More while examples
For loops
More for loop examples

Loops and strings
Nested loops
Developing programs incrementally

Break and continue
Variable name scope

Enumerations
Java example: Salary calculation with loops
Java example: Domain name validation with loops

Checkpoint 5: Arrays

Array concept (general)
Arrays



Array iteration drill
Iterating through arrays

Multiple arrays
Swapping two variables (General)

Loop-modifying or copying/comparing arrays
Debugging example: Reversing an array
Two-dimensional arrays

Enhanced for loop: Arrays
Java example: Annual salary tax rate calculation with arrays

Java example: Domain name validation with arrays

Checkpoint 6: User-Defined Methods

User-defined method basics
Print methods

Reasons for defining methods
Writing mathematical methods
Methods with branches

Methods with loops
Unit testing (methods)

How methods work
Methods: Common errors
Array parameters

Scope of variable/method definitions
Method name overloading

Parameter error checking
Using Scanner in methods
Perfect size arrays

Oversize arrays
Methods with oversize arrays

Comparing perfect size and oversize arrays
Using references in methods
Returning arrays from methods

Common errors: Methods and arrays
Java documentation for methods

Java example: Salary calculation with methods
Java example: Domain name validation with methods

Checkpoint 7: Objects and Classes

Objects: Introduction

Using a class
Defining a class
Mutators, accessors, and private helpers

Initialization and constructors
Choosing classes to create

Defining main() in a programmer-defined class
Unit testing (classes)
Constructor overloading

Objects and references
The ‘this’ implicit parameter

Primitive and reference types
Wrapper class conversions
ArrayList

Classes and ArrayLists



ArrayList ADT
Java documentation for classes

Parameters of reference types
Static fields and methods

Using packages
Java example: Salary calculation with classes
Java example: Domain name availability with classes

Checkpoint 8: Memory Management

Introduction to memory management
A first linked list

Memory regions: Heap/Stack
Basic garbage collection
Garbage collection and variable scope

Java example: Employee list using ArrayLists

Checkpoint 9: Input/Output

Output and input streams
Output formatting

Streams using Strings
File input

File output

Checkpoint 10: Inheritance

Derived classes
Access by members of derived classes

Overriding member methods
The Object class

Polymorphism
ArrayLists of Objects
Abstract classes: Introduction (generic)

Abstract classes
Is-a versus has-a relationships

UML
Interfaces
Java example: Employees and overriding class methods

Java example: Employees and instantiating from an abstract class

Checkpoint 11: Recursion

Recursion: Introduction

Recursive methods
Recursive algorithm: Search
Adding output statements for debugging

Creating a recursive method
Recursive math methods
Recursive exploration of all possibilities

Stack overflow
Java example: Recursively output permutations



Checkpoint 12: Exceptions

Handling exceptions
Throwing exceptions

Exception with files
Exceptions with methods

User-defined exceptions
Java example: Generate number format exception

Checkpoint 13: Generics

Generic methods

Generic methods and type bounds
Generic classes

Generic classes with type bounds
Comparable Interface: Sorting an ArrayList
Java example: Map values using a generic method

Checkpoint 14: Collections

Enhanced for loop
List: LinkedList
Map: HashMap

Set: HashSet
Queue interface

Deque interface
SortedSet: TreeSet
Queue: PriorityQueue

Stack

Checkpoint 15: GUI

Basic graphics

Introduction to graphical user interfaces
Positioning GUI components using a GridBagLayout
GUI input and ActionListeners

GUI input with formatted text fields
GUI input with JSpinners

Displaying multi-line text in a JTextArea
Using tables in GUIs
Using sliders in GUIs

GUI tables, fields, and buttons: A seat reservation example
Reading files with a GUI

Checkpoint 16: JavaFX

Introduction to graphical user interfaces with JavaFX
Positioning GUI components using a GridPane
Input and event handlers

Basic graphics with JavaFX

Checkpoint 17: Searching and Sorting Algorithms



Searching and algorithms
Binary search

O notation
Algorithm analysis

Sorting: Introduction
Selection sort
Insertion sort

Quicksort
Merge sort

Related Courses

IT101

IT Fundamentals

View Course →

MAT102

Quantitative Reasoning

View Course →

MAT202

Introduction to Statistics

View Course →

https://www.straighterline.com/online-college-courses/information-technology-fundamentals/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_information_technology_fundamentals&utm_content=10252
https://www.straighterline.com/online-college-courses/quantitative-reasoning/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_survey_of_world_history&utm_content=10252
https://www.straighterline.com/online-college-courses/introduction-to-statistics/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_intro_to_statistics&utm_content=10252

