straighterline Syllabus

CS104 | Introduction to Programming in Python

Course Text

There is no text for this course. All materials are included in the course fee.

Course Description

This course provides a comprehensive foundation in Python programming for beginners. Students learn core
programming concepts including variables, data types, control structures, and functions before advancing to
object-oriented programming with classes and inheritance. The course covers essential data structures like lists
and dictionaries, file handling, exception management, and modular programming. Advanced topics include
recursion, algorithm design for searching and sorting, and data visualization through plotting. Students gain
practical experience building programs that solve real-world problems while developing computational thinking
skills. By course completion, students will be proficient in Python fundamentals and prepared for intermediate
programming courses.

Learning Outcomes
After completing this course, students will be able to:

. Apply fundamental Python syntax and programming constructs to solve basic computational problems.

. Analyze data types and their appropriate usage in different programming contexts.

. Evaluate different conditional logic approaches to implement decision-making in programs.

. Create iterative solutions using various loop structures to process data and solve repetitive tasks.

. Design modular programs by implementing and utilizing functions with appropriate parameters and return

u D W N -

values.

6. Manipulate string and collection data structures (lists and dictionaries) to store, access, and process
information.

7. Construct object-oriented solutions using classes, inheritance, and encapsulation principles.

8. Implement robust error handling and program modularity through exceptions and module organization.

9. Synthesize file I/O operations with data processing techniques to create programs that interact with
external data sources.

10. Compare and implement fundamental algorithms including recursive solutions, searching, and sorting

techniques, while visualizing results through plotting.

Course Prerequisites

There are no prerequisites for this course.

Academic Integrity Statement



Academic integrity is the pursuit of scholarly activity in an honest, truthful and responsible manner. Violations
of academic integrity include, but are not limited to, plagiarism, cheating, fabrication and academic
misconduct. Failure to comply with the Academic Integrity Policy can result in a failure and/or zero on the
attempted assignment/examination, a removal from the course, disqualification to enroll in future courses,
and/or revocation of an academic transcript.

Course Completion Policy

In order for a course to be considered complete, all required coursework must be attempted, submitted,
and graded. Required coursework consists of graded assignments. Any Academic Integrity Policy violations
may prevent a course from being considered complete.

Assessment Types

StraighterLine courses may include any combination of the assessment types described below. Review the
descriptions to learn about each type, then review the Course Evaluation Criteria to understand how your
learning will be measured in this course.

Benchmarks

Benchmarks test your mastery of course concepts. You have 3 attempts, and your highest score counts.
Note: Cumulative Benchmarks (final exams) only allow 1 attempt.

Capstones

Capstones are project-based assessments that help you apply concepts to real-world scenarios. You have 2
attempts, and your highest score counts.

Checkpoints

Checkpoints are quick knowledge checks on important course concepts. All are open-book, and most have
1-3 attempts.

AI Use-Case Policies

StraighterLine Capstone assessments operate under one of three Al Use-Case Policies. These designations are
selected intentionally to support learners in developing digital literacy, ethical reasoning, and authentic
communication skills. Each model requires students to engage meaningfully with the course outcomes while
adhering to academic standards.

Independent Work Requirement: Capstones with this designation must be completed independently without
using Al tools. The goal is for learners to showcase their own understanding and skills without Al assistance.
Students are expected to generate and submit original work developed solely through their own reasoning and
effort.

AI-Assisted Planning Option: Capstones with this designation may allow Al tools to support brainstorming
and assessment planning. If allowed, students will be asked to document any AI assistance by noting how it
informed their work. Documentation must be included within the assignment or in a designated reflection field.
Examples include describing how an AI tool helped organize an outline, generate ideas, or surface sources for
further exploration.



AI-Integration Requirement: Capstones with this designation require Al tools as part of the learning
process. Students will be asked to reflect upon their Al interactions and Al contributions to the assessment.
Reflections must include which tools were used, how they were used, and what insights students gained from
the process. This promotes transparency, ethical use, and metacognitive skill-building.

Course Evaluation Criteria

Your score provides a percentage score and letter grade for each course. A passing percentage is 70% or
higher.

There are a total of 1000 points in the course:

Assessment Points Learning Outcomes
Checkpoint 1: Introduction to Python 20 1
Benchmark 1: Introduction to Python 42 1
Checkpoint 2: Variables and Expressions 20 1
Benchmark 2: Variables and Expressions 42 1
Checkpoint 3: Types 20 2
Benchmark 3: Types 42 2
Checkpoint 4: Branching 20 3
Benchmark 4: Branching 42 3
Checkpoint 5: Loops 20 4
Benchmark 5: Loops 42 4
Checkpoint 6: Functions 20 5
Benchmark 6: Functions 42 5
Checkpoint 7: Strings 20 6
Benchmark 7: Strings 42 6
Checkpoint 8: Lists and Dictionaries 20 6
Benchmark 8: Lists and Dictionaries 42 6
Checkpoint 9: Classes 20 7
Benchmark 9: Classes 43 7
Checkpoint 10: Exceptions 20 8
Benchmark 10: Exceptions 43 8
Checkpoint 11: Modules 20 8
Benchmark 11: Modules 43 8
Checkpoint 12: Files 20 9
Benchmark 12: Files 43 9

Checkpoint 13: Inheritance 20 7



Assessment Points Learning Outcomes

Benchmark 13: Inheritance 43 7
Checkpoint 14: Recursion 20 10
Benchmark 14: Recursion 43 10
Checkpoint 15: Plotting 20 10
Benchmark 15: Plotting 43 10
Checkpoint 16: Searching and Sorting Algorithms 20 10
Benchmark 16: Searching and Sorting Algorithms 43 10
Total 1000

Course Roadmap

This roadmap provides an overview of the checkpoints and lessons covered in this course.

Checkpoint 1: Introduction to Python

e Programming (general)

e Programming using Python

e Basic input and output

e Errors

e Integrated development environment
e Computers and programs (general)

e Computer tour

e Language history

¢ Why whitespace and precision matter
e Python example: Salary calculation

e Additional practice: Output art

Checkpoint 2: Variables and Expressions

e Variables and assignments

o Identifiers

e Objects

e Numeric types: Floating-point
e Arithmetic expressions

e Python expressions

¢ Division and modulo

e Module basics

e Math module

¢ Random numbers

e Representing text

e Additional practice: Number games

Checkpoint 3: Types



e String basics

e String formatting

e List basics

e Tuple basics

e Set basics

e Dictionary basics

e Common data types summary
e Additional practice: Grade calculation
e Type conversions

e Binary numbers

¢ Additional practice: Health data

Checkpoint 4: Branching

o If-else branches (general)

e Detecting equal values with branches

e Detecting ranges with branches (general)
e Detecting ranges with branches

e Detecting ranges using logical operators
e Detecting ranges with gaps

¢ Detecting multiple features with branches
e Comparing data types and common errors
e Membership and identity operators

¢ Order of evaluation

¢ Code blocks and indentation

e Conditional expressions

e Additional practice: Tweet decoder

Checkpoint 5: Loops

e Loops (general)

e While loops

e More while loop examples

e Counting

e For loops

e Counting using the range() function
e While vs. for loops

e Nested loops

¢ Developing programs incrementally
e Break and continue

e Loop else

e Getting both index and value when looping: enumerate()
¢ Additional practice: Dice statistics

Checkpoint 6: Functions

e User-defined function basics

e Print functions

e Dynamic typing

e Reasons for defining functions

e Writing mathematical functions
e Function stubs

e Functions with branches/loops

e Functions are objects



e Functions: Common errors

e Scope of variables and functions

e Namespaces and scope resolution

e Function arguments

e Keyword arguments and default parameter values
¢ Arbitrary argument lists

e Multiple function outputs

e Help! Using docstrings to document functions

e Engineering examples

Checkpoint 7: Strings

e String slicing

e Advanced string formatting
e String methods

e Splitting and joining strings

Checkpoint 8: Lists and Dictionaries

e Lists

e List methods

e Iterating over a list

e List games

e List nesting

e List slicing

e Loops modifying lists

e List comprehensions

e Sorting lists

e Command-line arguments
e Additional practice: Engineering examples
¢ Dictionaries

¢ Dictionary methods

e Iterating over a dictionary
e Dictionary nesting

Checkpoint 9: Classes

e Classes: Introduction

e Classes: Grouping data

e Instance methods

e Class and instance object types

e Class example: Seat reservation system

e Class constructors

e Class interfaces

e Class customization

e More operator overloading: Classes as numeric types
e Memory allocation and garbage collection

Checkpoint 10: Exceptions

e Handling exceptions using try and except
e Multiple exception handlers

e Raising exceptions

e Exceptions with functions



e Using finally to clean up
e Custom exception types

Checkpoint 11: Modules

e Modules

e Finding modules

e Importing specific names from a module
e Executing modules as scripts

¢ Reloading modules

e Packages

e Standard library

Checkpoint 12: Files

e Reading files

e Writing files

¢ Interacting with file systems

e Binary data

¢ Command-line arguments and files
¢ The “with” statement

e Comma separated values files

Checkpoint 13: Inheritance

¢ Derived classes

e Accessing base class attributes

e Overriding class methods

e Is-a versus has-a relationships

e Mixin classes and multiple inheritance
e Testing your code: The unittest module

Checkpoint 14: Recursion

e Recursive functions

e Recursive algorithm: Search

e Adding output statements for debugging
e Creating a recursive function

e Recursive math functions

e Recursive exploration of all possibilities

Checkpoint 15: Plotting

e Introduction to data science

e Data science life cycle

¢ Introduction to Python for data science
e Introduction to Jupyter Notebooks

e NumPy

e pandas

¢ Matplotlib

Checkpoint 16: Searching and Sorting Algorithms




Searching and algorithms
Binary search

O notation

Algorithm analysis
Sorting: Introduction
Selection sort

Insertion sort

Quicksort
Merge sort
Related Courses
IT101 MAT102 MAT202
IT Fundamentals Quantitative Reasoning Introduction to Statistics

View Course — View Course —

View Course —


https://www.straighterline.com/online-college-courses/information-technology-fundamentals/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_information_technology_fundamentals&utm_content=10252
https://www.straighterline.com/online-college-courses/quantitative-reasoning/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_survey_of_world_history&utm_content=10252
https://www.straighterline.com/online-college-courses/introduction-to-statistics/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_intro_to_statistics&utm_content=10252

