
CS104 | Introduction to Programming in Python

Course Text

There is no text for this course. All materials are included in the course fee.

Course Description

This course provides a comprehensive foundation in Python programming for beginners. Students learn core
programming concepts including variables, data types, control structures, and functions before advancing to

object-oriented programming with classes and inheritance. The course covers essential data structures like lists
and dictionaries, file handling, exception management, and modular programming. Advanced topics include
recursion, algorithm design for searching and sorting, and data visualization through plotting. Students gain

practical experience building programs that solve real-world problems while developing computational thinking
skills. By course completion, students will be proficient in Python fundamentals and prepared for intermediate

programming courses.

Learning Outcomes

After completing this course, students will be able to:

1. Apply fundamental Python syntax and programming constructs to solve basic computational problems.
2. Analyze data types and their appropriate usage in different programming contexts.
3. Evaluate different conditional logic approaches to implement decision-making in programs.

4. Create iterative solutions using various loop structures to process data and solve repetitive tasks.
5. Design modular programs by implementing and utilizing functions with appropriate parameters and return

values.
6. Manipulate string and collection data structures (lists and dictionaries) to store, access, and process

information.

7. Construct object-oriented solutions using classes, inheritance, and encapsulation principles.
8. Implement robust error handling and program modularity through exceptions and module organization.

9. Synthesize file I/O operations with data processing techniques to create programs that interact with
external data sources.

10. Compare and implement fundamental algorithms including recursive solutions, searching, and sorting

techniques, while visualizing results through plotting.

Course Prerequisites

There are no prerequisites for this course. 

Academic Integrity Statement



Academic integrity is the pursuit of scholarly activity in an honest, truthful and responsible manner. Violations
of academic integrity include, but are not limited to, plagiarism, cheating, fabrication and academic

misconduct. Failure to comply with the Academic Integrity Policy can result in a failure and/or zero on the
attempted assignment/examination, a removal from the course, disqualification to enroll in future courses,

and/or revocation of an academic transcript.

Course Completion Policy

In order for a course to be considered complete, all required coursework must be attempted, submitted,
and graded. Required coursework consists of graded assignments. Any Academic Integrity Policy violations

may prevent a course from being considered complete.

Assessment Types

StraighterLine courses may include any combination of the assessment types described below. Review the

descriptions to learn about each type, then review the Course Evaluation Criteria to understand how your
learning will be measured in this course. 

Benchmarks

Benchmarks test your mastery of course concepts. You have 3 attempts, and your highest score counts.

Note: Cumulative Benchmarks (final exams) only allow 1 attempt.

Capstones

Capstones are project-based assessments that help you apply concepts to real-world scenarios. You have 2
attempts, and your highest score counts.

Checkpoints

Checkpoints are quick knowledge checks on important course concepts. All are open-book, and most have
1-3 attempts.

AI Use-Case Policies

StraighterLine Capstone assessments operate under one of three AI Use-Case Policies. These designations are
selected intentionally to support learners in developing digital literacy, ethical reasoning, and authentic

communication skills. Each model requires students to engage meaningfully with the course outcomes while
adhering to academic standards. 

Independent Work Requirement: Capstones with this designation must be completed independently without

using AI tools. The goal is for learners to showcase their own understanding and skills without AI assistance.
Students are expected to generate and submit original work developed solely through their own reasoning and

effort. 

AI-Assisted Planning Option: Capstones with this designation may allow AI tools to support brainstorming
and assessment planning. If allowed, students will be asked to document any AI assistance by noting how it

informed their work. Documentation must be included within the assignment or in a designated reflection field.
Examples include describing how an AI tool helped organize an outline, generate ideas, or surface sources for

further exploration. 



AI-Integration Requirement: Capstones with this designation require AI tools as part of the learning
process. Students will be asked to reflect upon their AI interactions and AI contributions to the assessment.

Reflections must include which tools were used, how they were used, and what insights students gained from
the process. This promotes transparency, ethical use, and metacognitive skill-building. 

Course Evaluation Criteria

Your score provides a percentage score and letter grade for each course. A passing percentage is 70% or
higher.

There are a total of 1000 points in the course:

Assessment Points Learning Outcomes

Checkpoint 1: Introduction to Python 20 1

Benchmark 1: Introduction to Python 42 1

Checkpoint 2: Variables and Expressions 20 1

Benchmark 2: Variables and Expressions 42 1

Checkpoint 3: Types 20 2

Benchmark 3: Types 42 2

Checkpoint 4: Branching 20 3

Benchmark 4: Branching 42 3

Checkpoint 5: Loops 20 4

Benchmark 5: Loops 42 4

Checkpoint 6: Functions 20 5

Benchmark 6: Functions 42 5

Checkpoint 7: Strings 20 6

Benchmark 7: Strings 42 6

Checkpoint 8: Lists and Dictionaries 20 6

Benchmark 8: Lists and Dictionaries 42 6

Checkpoint 9: Classes 20 7

Benchmark 9: Classes 43 7

Checkpoint 10: Exceptions 20 8

Benchmark 10: Exceptions 43 8

Checkpoint 11: Modules 20 8

Benchmark 11: Modules 43 8

Checkpoint 12: Files 20 9

Benchmark 12: Files 43 9

Checkpoint 13: Inheritance 20 7



Assessment Points Learning Outcomes

Benchmark 13: Inheritance 43 7

Checkpoint 14: Recursion 20 10

Benchmark 14: Recursion 43 10

Checkpoint 15: Plotting 20 10

Benchmark 15: Plotting 43 10

Checkpoint 16: Searching and Sorting Algorithms 20 10

Benchmark 16: Searching and Sorting Algorithms 43 10

Total 1000

Course Roadmap

This roadmap provides an overview of the checkpoints and lessons covered in this course.

Checkpoint 1: Introduction to Python

Programming (general)
Programming using Python
Basic input and output

Errors
Integrated development environment

Computers and programs (general)
Computer tour
Language history

Why whitespace and precision matter
Python example: Salary calculation

Additional practice: Output art

Checkpoint 2: Variables and Expressions

Variables and assignments
Identifiers

Objects
Numeric types: Floating-point

Arithmetic expressions
Python expressions
Division and modulo

Module basics
Math module
Random numbers

Representing text
Additional practice: Number games

Checkpoint 3: Types



String basics
String formatting

List basics
Tuple basics

Set basics
Dictionary basics
Common data types summary

Additional practice: Grade calculation
Type conversions

Binary numbers
Additional practice: Health data

Checkpoint 4: Branching

If-else branches (general)

Detecting equal values with branches
Detecting ranges with branches (general)
Detecting ranges with branches

Detecting ranges using logical operators
Detecting ranges with gaps

Detecting multiple features with branches
Comparing data types and common errors
Membership and identity operators

Order of evaluation
Code blocks and indentation

Conditional expressions
Additional practice: Tweet decoder

Checkpoint 5: Loops

Loops (general)

While loops
More while loop examples

Counting
For loops
Counting using the range() function

While vs. for loops
Nested loops

Developing programs incrementally
Break and continue
Loop else

Getting both index and value when looping: enumerate()
Additional practice: Dice statistics

Checkpoint 6: Functions

User-defined function basics

Print functions
Dynamic typing

Reasons for defining functions
Writing mathematical functions
Function stubs

Functions with branches/loops
Functions are objects



Functions: Common errors
Scope of variables and functions

Namespaces and scope resolution
Function arguments

Keyword arguments and default parameter values
Arbitrary argument lists
Multiple function outputs

Help! Using docstrings to document functions
Engineering examples

Checkpoint 7: Strings

String slicing
Advanced string formatting
String methods

Splitting and joining strings

Checkpoint 8: Lists and Dictionaries

Lists
List methods

Iterating over a list
List games

List nesting
List slicing
Loops modifying lists

List comprehensions
Sorting lists

Command-line arguments
Additional practice: Engineering examples
Dictionaries

Dictionary methods
Iterating over a dictionary

Dictionary nesting

Checkpoint 9: Classes

Classes: Introduction
Classes: Grouping data

Instance methods
Class and instance object types

Class example: Seat reservation system
Class constructors
Class interfaces

Class customization
More operator overloading: Classes as numeric types
Memory allocation and garbage collection

Checkpoint 10: Exceptions

Handling exceptions using try and except
Multiple exception handlers

Raising exceptions
Exceptions with functions



Using finally to clean up
Custom exception types

Checkpoint 11: Modules

Modules
Finding modules

Importing specific names from a module
Executing modules as scripts
Reloading modules

Packages
Standard library

Checkpoint 12: Files

Reading files
Writing files
Interacting with file systems

Binary data
Command-line arguments and files
The “with” statement

Comma separated values files

Checkpoint 13: Inheritance

Derived classes

Accessing base class attributes
Overriding class methods
Is-a versus has-a relationships

Mixin classes and multiple inheritance
Testing your code: The unittest module

Checkpoint 14: Recursion

Recursive functions
Recursive algorithm: Search
Adding output statements for debugging

Creating a recursive function
Recursive math functions

Recursive exploration of all possibilities

Checkpoint 15: Plotting

Introduction to data science
Data science life cycle

Introduction to Python for data science
Introduction to Jupyter Notebooks

NumPy
pandas
Matplotlib

Checkpoint 16: Searching and Sorting Algorithms



Searching and algorithms
Binary search

O notation
Algorithm analysis

Sorting: Introduction
Selection sort
Insertion sort

Quicksort
Merge sort

Related Courses

IT101

IT Fundamentals

View Course →

MAT102

Quantitative Reasoning

View Course →

MAT202

Introduction to Statistics

View Course →

https://www.straighterline.com/online-college-courses/information-technology-fundamentals/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_information_technology_fundamentals&utm_content=10252
https://www.straighterline.com/online-college-courses/quantitative-reasoning/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_survey_of_world_history&utm_content=10252
https://www.straighterline.com/online-college-courses/introduction-to-statistics/?utm_source=organic&utm_medium=organic_direct&utm_campaign=syllabus_intro_to_statistics&utm_content=10252

